skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khesin, Andrey Boris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Improving the simulation of quantum circuits on classical computers is important for understanding quantum advantage and increasing development speed. In this paper, we explore a way to express stabilizer states and further improve the speed of simulating stabilizer circuits with a current existing approach. First, we discover a unique and elegant canonical form for stabilizer states based on graph states to better represent stabilizer states and show how to efficiently simplify stabilizer states to canonical form. Second, we develop an improved algorithm for graph state stabilizer simulation and establish limitations on reducing the quadratic runtime of applying controlled Pauli Z gates. We do so by creating a simpler formula for combining two Pauli-related stabilizer states into one. Third, to better understand the linear dependence of stabilizer states, we characterize all linearly dependent triplets, revealing symmetries in the inner products. Using our controlled Pauli Z algorithm, we improve runtime for inner product computation from O(n^3) to O(nd^2), where d is the maximum degree of the graph encountered during the calculation. 
    more » « less